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LETTER TO THE EDITOR 

A vector Lagrangian for the electromagnetic field 

A Sudbery 
Department of Mathematics, University of York, York YO1 5DD, UK 

Received 14 August 1985 

Abstract. A variational principle for Maxwell’s equations in which the variables are the 
electromagnetic field strengths is formulated covariantly; the Lagrangian density is a 
4-vector. Conserved quantities associated with translations, Lorentz transformations and 
duality rotations are determined. 

It has been pointed out by Anderson and Arthurs (1978) and Rosen (1980) that 
Maxwell’s equations for the electromagnetic field can be derived from a variational 
principle in which the independent variables are the electric and magnetic fields (and 
not, as usual, the potentials). In this letter we present a relativistically covariant 
formulation of this variational principle. This has the interesting feature that the 
Lagrangian is not a Lorentz scalar but a 4-vector. We examine the invariances of this 
Lagrangian, and show that its translational invariance provides an explanation for a 
tensor of conserved quantities discovered by Lipkin (1964). This formulation also 
makes it possible to treat duality rotations as a symmetry of’ the Lagrangian in the 
usual way. 

The variational principle of Anderson and Arthurs (1978) and Rosen (1980) is that 
the integral 

So=[ ( B . ; - E . - - E .  aE aB (V x E ) - B -  (V x B ) + 2 j .  B 
at  

should be stationary under variations of E and B, the current density j being given. 
The Euler-Lagrange equations for this problem are the partial set of Maxwell equations 

V x E = -aB/at ,  V x B =  j + a E / a t .  (2) 

Let be the integrand of (1). This is the time component of a 4-vector 

LfO = *F’”a.F,, - F”aV*FWa -2*FafijP (3) 

where FFY is the electromagnetic field tensor ( Fo, = E,, FJ = -cl&), * FFy = eFup,,F 
is its dual (*Fo, = -B, ,  *EJ = - E r J k E k ) ,  and j” = ( p , j )  is the current 4-vector. The four 
simultaneous variational principles that 

S, = d4x (4) I 
should be stationary under variations of F,, j’ being fixed, lead to Euler-Lagrange 
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equations 

These are equivalent to the full set of Maxwell's equations 

a,F,+" = j" ,  a,*F,+" = 0. (6) 

Note that when these field equations are satisfied, the value of the Lagrangian 
density becomes 

3, = -*F,,j". (7 )  

The space part of the 4-vector Lagrangian density 3, is 

b= E x (V x B ) -  B X  (V x E ) + ( V  * E ) B  

- (V  . B ) E  - E  x a E / a t -  B x a B / a t + 2 j x  E -2pB. (8) 
The variational principle for the integral of 9 yield Euler-Lagrange equations 

E,k(aEk/dt + j k )  + a,B, -a,BJ + v * Bb, = 0, 

E,k aBk /a t+a ,EJ-aJE, - (V .  E - p ) 6 , = 0 ,  

whose symmetric and antisymmetric parts give the usual four Maxwell's equations. 
It is probably impossible to make the Lagrangian (3) yield the equations of motion 

for charged matter by treating the source variables as independent degrees of freedom 
and adding a kinetic term. 

In the absence of sources ( j "  = 0) the action (4) is invariant under spacetime 
translations. The argument which normally leads to the divergence-free energy- 
momentum tensor TL yields in this case a third-rank tensor 

U,,+' = (a-Y,/a(a,Fp"))a,Fp" - 3,s; 
=*FP'a ,+ F p, - FP"d,*Fp,  -(*FP"a,FP" - F P " a , * F p a ) ~ ;  ( 9 )  

Z a g v = - t ( U , C I Y + ~ a g " Y ) + ~ ~ " Y p u a p F u T F T a  + ( a * ~ ) .  (10) 

which satisfies avUa,+" = 0. It is related to Lipkin's tensor Zap" by 

Since 9, vanishes as a consequence of the source-free field equations, and the third 
term, a four-dimensional curl, is automatically divergence-free, Lipkin's tensor is 
essentially the symmetric part of The equation dvZal , "  = 0 expresses the conserva- 
tion of the scalar, the 3-vector and the symmetric traceless 3-tensor whose densities are 

Z = E *  ( V X  E ) +  B . ( V  x B ) ,  

Z = E  x ( V X  B ) - B x ( V  x E )  

z= E v (V x E ) +  B v  ( V X  B )  

(11) 

(12) 

(13) 

and the traceless part of 

where U v U denotes the symmetric tensor u,uJ + u p 8 .  
The antisymmetric part of U,,+" can, using the field equations, be put in the form 

X a P u  = U,,' - U p a y  = * F"PdpF,, - FuP ap*F,,. (14) 
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The corresponding conserved quantities are the vectors with densities 

x = ( E .  V ) E  + ( B .  V)B (15) 

and 

Y = ( E - V ) B - ( B . V ) E .  

Unlike the symmetric part (4), the antisymmetric tensor X , ,  consists of derivatives 
of the energy-momentum tensor TL: 

T,"). (17) Xu," = --ap( EP'FYTuOL - E P U " Y T u F  + & P a f i r  

Lorentz transformations give rise to a set of currents forming the tensor 

* F ,  "FAa + * FYPFApguK + E , , ~ , F ~ ~ F ~ ~  + X, Tu,  - ( K  e A ). (18) 

The vector nature of the Lagrangian means that these currents d o  not describe the 
flow of conserved quantities; instead of a continuity equation, they satisfy 

a U j a K h y  = g u K 3 A  - gah3K*  (19) 

However, for any constant 4-vector f a  the component t"Ta is invariant under Lorentz 
transformations belonging to the little group of tu .  This means that for every 4-vector 
t u  and antisymmetric tensor wuP satisfying weptP = 0 there is a conserving current 

j "  = t a w K A j u K h Y .  (20) 
In the case of the timelike 4-vector f a  = (1 ,O)  we obtain the components of a conserved 
3-vector associated with the rotational invariance of So, the integrand of (1). The 
density J, = t ~ ~ k j ~ ~ ~ ~  of this angular momentum-like vector is 

J = 2 E  x B + r x ( Y + 2) (21) 

where Y and 2 are the vectors of (12) and  (16). 

rotations 
With the field strengths as basic variables it is possible to implement the duality 

F," + F,,, cos 8 + * Fpy sin 6 

E + i B +  e i e ( E  +iB) 

(22) 

i.e. 

which is not possible when the variables are the potentials. Since ** F = - F, (22) implies 

(23) 

and  in the absence of sources all components of 3- are clearly invariant. (Note also 
the invariance of the conserved quantities ( 1  1)-( 13), (15) and  (16).) This gives rise to 
a set of four conserving currents forming the tensor 

* F F v + - F F ,  sin 6+*F,, cos 6, 

a s u  d 
T" = -(Fpu COS 6+*Fp ,  sin 6 ) e = o  
a a(avFPu) de 
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which is the usual energy-momentum tensor. Thus, in this formulation, energy- 
momentum conservation is associated not with translational invariance but with invari- 
ance under duality rotations. 

I am grateful to Dr N Anderson for a number of interesting conversations and for 
drawing my attention to the literature. 

Note added in proof: Another connection between translational invariance and Lipkin’s conserved tensor 
has been demonstrated by D B Fairlie (1965 Nuovo Cimenro 37 897). 
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